
EUROCON 2005 Serbia & Montenegro, Belgrade, November 22-24, 2005

Abstract — Threshold puzzles represent an improved

version of client puzzles, which have been proposed to add

DoS resistance to authentication protocols. They involve the

time management of solved puzzle instances, thus making the

protocol resistant to strong attacks. This paper addresses the

need of adapting the puzzle complexity to the computational

power of the client and introduces a new concept: the

adaptive threshold puzzles.

Keywords — Denial of Service, Attack, Authentication,

Client puzzles, Adaptive threshold puzzles.

I. INTRODUCTION

ENIAL of service attacks are a major problem in

today’s interconnected world. Attackers are known to

exploit the end-user ignorance and break into hundreds of

thousands of systems to install their tool of choice. These

“zombie” systems are capable of receiving commands

from a central operations center via encrypted channels

and the main reason for their existence is to generate bogus

traffic targeted towards a specific website. In order to

make tracking more difficult, the source IP address may be

spoofed but in the same time it may be chosen from the

same subnet in order to avoid egress filtering [1].

In order to add DoS-resistance to any authentication

protocol, the design principle should be that the client

always commits its resources before the server does and at

any point during protocol execution, the cost for the client

should be greater than that for the server. The client cost

may be increased artificially by asking it to do some work

whose difficulty may be effortlessly chosen by the server.

At the same time, the verification for correctness should

not place a burden on the server since that would defeat the

very purpose of the technique.

Although the idea of using cryptographic puzzles for

key agreement appeared in early 1980s [2], client puzzles

started to be used as means of enforcing authentication

protocols only recently, after a series of DoS attacks

produced significant financial losses for a list of major

websites, including Yahoo!, Amazon and eBay [3].

Currently, client puzzles are used for authentication

protocols in general [4], to prevent TCP SYN flooding [5]

and as a regulating measure against junk mail [6]. Also,

V. Bocan is a Ph.D. student with the Department of Computer

Science and Engineering, “Politehnica” University of Timisoara,

Romania (phone: +40 722 714798; e-mail: vbocan@dataman.ro).

M. Fagadar-Cosma is with the Digital Signal Processing Laboratories,

Department of Computer Science and Engineering, “Politehnica”

University of Timisoara, Romania (phone: +40 721 000499; e-mail:

mfagadar@yahoo.com).

time-locked cryptography was addressed [7], but its

inherent sequential nature makes it very difficult for the

server to verify the solution.

II. CLIENT PUZZLES

Before committing resources the server should ask the

client to solve a problem, as seen in Fig. 1. Regardless of

the specific implementation, a good puzzle should have the

following properties [4], the last of which being new:

Fig. 1. Principle of the client puzzle protocol

1. Creating a puzzle and verifying the solution is

inexpensive for the server.

2. The cost of solving the puzzle is easy to adjust from

zero to impossible.

3. The puzzle can be solved on most types of client

hardware (although it may take longer with slow

hardware).

4. It is not possible to precompute solutions to the

puzzles.

5. While the client is solving the puzzle, the server

does not need to store the solution or other client-

specific data.

6. The same puzzle may be given to several clients.

Knowing the solution of one or more clients does

not help a new client in solving the puzzle.

7. A client can reuse a puzzle by creating several

instances of it.

8. The puzzle should not be solved in less than a

predetermined amount of time.

The natural choice for a client puzzle is the brute force

reversal of hash functions such as MD5 or SHA1 since

they have a simple structure and can run on a variety of

hardware platforms. The use of a reduced round cipher

instead of the hash function has also been proposed [5] but

that is beyond the scope of this paper.

A. Creating a new puzzle

Periodically (once every few minutes), the server

generates a random value NS. In order to prevent attacks by

guessing the nonce, the value should have 64 bits of

entropy and should not be a predictable value such as a

time stamp. This entropy should be enough to prevent an

Adaptive Threshold Puzzles

Valer Bocan, Member, IEEE and Mihai Făgădar-Cosma

D

attacker to precompute <nonce-result> pairs and the

occasional matches caused by birthday attacks would not

do too much harm here. The server has to decide the

difficulty level k of the puzzle, based on the current

conditions. To sum up, the puzzle that is broadcast to

clients is the pair:

 ., >< kN S
 (1)

B. Solving the puzzle

To solve the puzzle, the client C generates a nonce NC.

The purpose of this nonce is twofold. First, if the client

reuses a server nonce NS, it can create a new instance by

generating a new NC. Second, without the client nonce an

attacker could compute the puzzle and send the result back

to the server before the client does. 24 bits of entropy

should be enough to prevent the attacker from exhausting

the values of NC given that NS changes frequently.

The client must repeatedly apply a hash function h to a

quantity X and the puzzle is considered solved when the

first k bits of the result Y are equal to 0, as shown in

equation (2).

 .),,,(YXNNCh CS = (2)

Since the server changes NS periodically, while it

considers NS recent, it must keep a list of correctly solved

instances in the form of NS−NC pairs so that previous

solutions cannot be reused.

Since there are no known shortcuts to find out X, the

only possibility is to search for it by brute-force. The

difficulty level k (i.e. the number of zeros at the beginning

of Y) dictates how long the puzzle will take to solve. If k

equals 0 then no work is required, whereas if k equals 128

(for MD5) or 192 (for SHA), the client must reverse an

entire one-way function which is computationally

impossible.

C. Puzzle difficulty

The parameter k represents the puzzle difficulty. The

task of establishing it at the time of puzzle generation is

rather tricky, since there is no obvious metric that one can

use in a real-world implementation. The best approach

would be the number of already committed RSA

operations rather than the current processor load or the

number of incoming requests [1]. Unfortunately, the puzzle

difficulty follows an exponential curve and thus it is

limited in practical purposes. To solve a puzzle of

difficulty k, the client needs to perform on average 2
k
–1

operations. Literature data [4] shows that reasonable

values for k are between 0 and 64. By experimenting, we

have found out that the reasonable range is much narrower

and for small difficulty levels, the time needed to solve the

puzzle for level k may be greater than the time for level

k+1.

As of today, the average web client is capable of

approximately 4500 – 5000 MIPS leading to 0.02 ms per

cryptographic operation. Thus, the puzzle difficulty curve

looks as in Fig. 2. For difficulty levels above 20, the time

needed to solve the puzzle is prohibitive, hence the limited

practical applicability. A cryptographic operation is

considered an attempt (not necessarily successful) to solve

the puzzle and includes the time needed to build up the

quantity X and the actual computation of either an MD5 or

a SHA function.

In order to obtain a more accurate scale for the puzzle

difficulty parameter, the puzzles can be split into several

smaller puzzles of equal difficulty [5]. These smaller

puzzles can be solved separately and the general result will

be a combination of the individual results. Literature

studies mention that the same granularity can be achieved

by combining sub-puzzles of varying difficulty, at a

slightly lower cost for the server [4], but that is yet to be

confirmed by experiment.

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Puzzle difficulty (k)

T
im
e
 t
o
 s
o
lv
e
 p
u
z
z
le
 (
m
s
)

Fig. 2. Solving time for different puzzle difficulties

III. THRESHOLD PUZZLES

Client puzzles have proved effective both in theory and

in practice. They are secure and perform well in most

scenarios. Regardless of the particular client being

serviced, the puzzle difficulty is chosen based on a metric

that refers strictly to the server resource commitment.

Since puzzles may be broadcast and are generated at

precise intervals, this “one size fits all” solution is not

perfect since different clients have various computing

powers. We have noted that client puzzles are vulnerable

to a particular form of attack (called henceforth “strong

attack”) due to the highly parallel nature of the puzzle. A

strong attack is defined as a denial of service attack

mounted by an attacker with access to massive computing

power. The attacker is able to solve puzzles in a time much

shorter than a legitimate client. The schematic of a strong

attack is shown in Fig. 3.

Strong

attack

Legitimate client

`
`

`

Server

`

Attacker

Normal traffic

With the aid of several zombies spread across the network, the attacker may have

access to massive computing power, which can render puzzle technology useless.

Fig. 3. Schematic of a strong attack on an authentication

protocol protected by client puzzles

Suppose that a server authenticates a number of

legitimate clients and the initial puzzle difficulty is set to

zero. When a strong attack is in progress, the server has the

tendency to gradually increase the puzzle difficulty up to

high values in order to cope with the important amount of

work required to service the attacker’s requests. While

puzzle difficulty may be increased up to impossible, this

also means a DOS attack in its own right targeted against

legitimate clients who may never solve such a difficult

puzzle.

Although not very likely, a strong attack is possible. If

an attacker had access to other N computers (with N being

sufficiently large so we speak about massive computing

power), then time needed to solve a puzzle with difficulty k

would be divided by N. There are many real-world

examples of how hundreds of thousands of computers are

put to work together for a common purpose, like the SETI

program [8] and the effort to break the RSA algorithms

[9], so strong attacks are definitely possible.

Threshold puzzles [10], [11] address the strong attack

issue in two ways: first, by limiting the difficulty level so

that the puzzle remains within usability margins and

second, by adding a minimum response time to the puzzle

definition.

A. Limiting the puzzle difficulty level

Although the current design of the client puzzle as it is

described in [4] specifies a difficulty range from 0 (no

work required) to 128 or 192 (impossible, depending on

the hash function used), a real-world implementation of an

authentication protocol is likely to choose a reasonable

range for the puzzle difficulty, say between 0 and 25, due

to the exponential scale which gives a narrow usability

margin. Having difficulty levels close to impossible may

open a new avenue of attack against the legitimate clients

themselves and this is an issue even more serious than

attacking just the server.

B. Establishing the minimum response time

The basic idea is to add the timestamp at which the

server nonce was generated to the list <NS, NC, X, k>

which is kept by the server in order to prevent reusing

puzzle instances. When the server receives a solution to a

puzzle, it can calculate the time it took the client to solve

the puzzle and that should not be less than an estimated

duration. If it is, then the server is under a strong attack

and should immediately cease communication with the

client in question. On average it takes 2k – 1 operations to

solve a puzzle of difficulty k, as shown in equation (3):

 .)12(operation

k

estimated TT ⋅−= (3)

Toperation represents the minimum time for performing a

cryptographic operation (currently in the range 0.01-0.02

ms) and must be determined experimentally or by using

Moore’s law. Thus, the estimated time represents the

acceptance threshold for the client puzzle.

IV. ADAPTIVE THRESHOLD PUZZLES

Although threshold puzzles add more resistance to

authentication protocols in front of strong attacks, they are

not adapted to the computational power of the client. In

order to solve a puzzle of a given complexity k, a “light”

client such as a PDA or a laptop computer, will take

considerably more time than a “heavy” one, like a PC

workstation or a cluster of personal computers. Therefore,

the puzzle difficulty level must be adjusted, so that it

matches the computational capabilities of the clients. This

is where we further refine the threshold puzzle concept, by

introducing the adaptive threshold puzzles.

Upon request of the client, who may claim that the

default puzzle is too difficult to solve, in order to

determine the computational power of the claimant, the

server will send a probe puzzle, containing a problem

which must be solved by the client. This problem may still

consist in the brute-force partial inversion of a dispersion

function (much like a regular client puzzle) or it may

require a different algorithm. Its difficulty and solving time

should exhibit a linear dependence. In order to fulfill this

requirement, a linearization algorithm can be employed

[12], which gives an acceptable cvasi-linear dependence

between problem complexity and solving time.

Based on the time it takes the client to solve the probe

puzzle, the server can determine its computational power,

PC. To overcome the situation in which a malicious client

deliberately solves the probe puzzle in a longer time in

order to conceal its true PC value, the client must be

encouraged to use its full available power during probe

puzzle solving. One solution may be to grant a number of

connections per time unit proportional to the reported PC.

For instance, if a powerful client is allocated a maximum

number of N connections per time unit, a less powerful

client (such as a PDA) will be allocated only N/2 or N/3

connections per time unit, given that the latter is 2 or 3

times less powerful than the former. If a malicious client

has reported a lower PC than it actually has, it will be

allocated a lower number of accepted connections per time

unit. If the client exceeds this number, the exceeding

connections will be dropped by the server, so that the

server will not be affected by an alleged attack from this

client.

After the server learns the computational power PC of

each of the client, the threshold puzzle mechanism is

employed, however for each client the complexity k is

adjusted. Assuming that the server wishes to set the puzzle

difficulty to k for clients with an average computational

power of Preference, for a client with the power PC, based on

equation (3), the difficulty level will be set to a value kC, as

shown in equation (4):

 .log 2

⋅=

reference

C
C

P

P
kroundk (4)

V. DOS-RESISTANT AUTHENTICATION USING ADAPTIVE

THRESHOLD PUZZLES

Client puzzles and threshold puzzles have been used to

add DoS-resistance to authentication protocols [4],

[10]−[13]. Using adaptive threshold puzzles, the protocol
is subject to further changes, due to the introduction of the

probe puzzle, which is employed by the server to

determine the computational power of each client.

Let us assume that, at a given moment in time, the server

decides to establish the difficulty level for its threshold

puzzles to k. This value is chosen to suit a large variety of

clients, with an average computational power given by

Preference.

The protocol begins with a new client C requesting a

connection to the server, in the form of a ClientHello

message. The client may elect to solve the default puzzle

provided by the server through broadcast messages, or it

may choose to request to be probed for computational

power, in order to be granted easier puzzles for subsequent

connections. Should that be the case, we propose a new

step to the normal threshold puzzles protocol [10], in

which the server will create a probe puzzle, which is sent

to the client in a time-stamped ProbeRequest message.

The client solves the probe puzzle and answers with a

time-stamped ProbeResponse message, containing the

solution to the probe puzzle. Based on the time it takes the

client to solve the puzzle, the server will determine its

computational power (PC) and use it to estimate the

difficulty level kC for the new client, according to equation

(4).

The normal threshold puzzle protocol can be used

subsequently, with one noted difference that new puzzles

for client C are generated as <NS, kC> pairs instead of

<NS, k> pairs. These puzzles are wrapped by

PuzzleRequest messages sent by the server to its clients.

As a protection method against malicious clients, the

server must also limit the number of accepted connections

per time unit for each individual client, based on its

reported computational power.

Any client willing to talk to the server has to generate a

random nonce NC and must correctly solve the threshold

puzzle contained in the PuzzleRequest message and

supply the C, NC and X parameters for verification, inside a

PuzzleResponse message. In case it wants to initiate

several connections to the same server, the client may

reuse the puzzle by generating a new NC.

Client Server

ClientHello

ProbeRequest

ProbeResponse

PuzzleRequest

PuzzleResponse

ServerHello

(1) Initiate a new

connection to server.

(2) Create a new probe

puzzle and send it to the

client

(3) Solve the probe puzzle

and send the time-stamped

result to server

(4) Determine client power

PC, threshold puzzle

complexity kC, and the

accepted number of

messages per time unit.

(5) Create a threshold

puzzle <NS, kC> and send

it to the client.

(6) Solve the threshold

puzzle and send the time-

stamped result to server

(7) Check the client

response, the time

required to solve the

puzzle and the number of

messages per time unit .

(8) Client authenticated

and connection

acknowledged.

Fig. 4. Schematic of an authentication protocol protected

by adaptive threshold puzzles

Upon receipt of a solved threshold puzzle, the server

checks whether the client C has already submitted a

solution with the same NS and NC. This check ensures that

solutions are not replayed. The server also checks whether

the puzzle was solved in a time shorter than Testimate, and if

the client exceeded its allocated number of connections per

time unit. In both cases, the server considers itself under

attack and drops the connection to the client in question,

without committing any resources. If the time exceeds the

estimate and the number of messages is within the

established limit, the server will proceed with calculating

the hash, verify the signature, acknowledge the connection

with a ServerHello message, and continue with the normal

protocol execution as shown in Fig. 4.

VI. CONCLUSIONS AND FUTURE WORK

Client puzzles have traditionally been the solution of

choice for active defense against denial of service attacks.

The original design of the puzzle was augmented in the

form of the threshold puzzle and because the one-size-fits-

all scenarios does not work perfectly in all cases, we

further refined the concept in order to take into account the

real processing power of the client. Adaptive threshold

puzzles adapt the difficulty of the problem with respect to

each client being serviced, enabling more judicious

allocation of server resources.

Experimental results based on the theory presented

herein will make the subject of a future article.

REFERENCES

[1] D. Dean and A. Stubblefield, “Using Client Puzzles to Protect

TLS”, in Proc. 10th Annu. USENIX Security Symposium,

Washington, 2001.

[2] R. C. Merkle, “Secure Communications Over Insecure Channels”,

Communications of the ACM, vol. 21, no. 4, pp. 294-299, Apr.

1978.

[3] Computer Emergency Response Team, 2000, CERT Advisory

CA−2000.01 Denial of service developments, Available:

http://www.cert.org/advisories/CA-2000-01.html.

[4] T. Aura, P. Nikander and J. Leiwo, “DOS-resistant Authentication

with Client Puzzles”, in Proc. 8th Int. Workshop on Security

Protocols, Cambridge, UK, 2000.

[5] A. Juels and J. Brainard, “Client Puzzles: A Cryptographic

Countermeasure Against Connection Depletion Attacks”, in Proc.

of NDSS, San Diego, 1999, pp. 151-165.

[6] C. Dwork and M. Naor, “Pricing via Processing or Combating Junk

Mail”, in Proc. CRYPTO ’92, Springer Verlag, 1992.

[7] R. R. Rivest, A. Shamir and D. A. Wagner, 1996, Time-lock

Puzzles and Timed-release Cryptography, Available:

http://lcs.mit.edu/~rivest/RivestShamirWagner-timelock.pdf.

[8] SETI @home Program, Available:

http://setiathome.ssl.berkeley.edu/.

[9] The Distributed.net Organization, Available:

http://www.distributed.net.

[10] V. Bocan, “Threshold Puzzles: The Evolution of DoS-resistant

Authentication”, Periodica Politehnica, Transactions on

Automatic Control and Computer Science, vol. 49, no. 63, 2004.

[11] V. Bocan, “Single Sign-On Systems under Denial of Service

Attacks”, PhD. report #3, Dept. of Computer Science and Eng.,

“Politehnica” Univ. of Timisoara, Timisoara, Romania, 2004.

[12] V. Bocan, “A Study on the Security Level Provided by

Authentication Protocols”,PhD. report #2, Dept. of Computer

Science and Eng., “Politehnica” Univ. of Timisoara, Timisoara,

Romania, 2004.

[13] Mentalis C# Security Library, Available: http://www.mentalis.org.

